

ICS 29.240.01
F 20
中华人民共和国电力行业标准
DL/T 802.1—2023
代替 DL/T 802.1—2007 了电缆导管技术。 第 1 部分: 总则 wants for power cable conduits

Technical requirements for power cable conduits

2023 - 05 - 26 发布

2023 - 11 - 26 实施

目 次

5 _	DL/T 802.1—2023
4 September 1981	
自次 前言	
目次	
前言	II
1 范围	1
2 规范性引用文件	1
3 术语和定义	2
4 符号和缩略语	6
5 产品分类、型号规格和标记	6
6 技术要求	7
7 试样	
8 试验方法	
9 检验规则	16
10 抽样	16
11 判定规则	. 833
12 标志、包装、贮存和出厂合格证	Wh.
附录 A (规范性) 散热性能试验方法	'10-
附录 B(资料性)电力电缆导管的选型原则	

前 言
本文件按照 GB/T 1.15 2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定中草。
 《电力电缆导管技术条件》分为 10 个部分:

- ——第10部分:涂塑钢质电缆导管。

本文件为 DL/T 802 的第1部分。

本文件是对DL/T 802.1—2007 《电力电缆用导管技术条件 DL/T 802.1—2007 相比, 除编辑性修改外, 主要技术内容变化如下:

- 偏差",并增加了"不圆度"要求(本部分6.5);
 - —改变了"公称壁厚允许偏差"的技术要求(本部分 6.5);
 - -完善了"导管弯曲度"的技术要求(本部分6.5);
 - —完善了"结构、材料性能"技术要求(本部分6.6):
 - —改变了"试样"的技术要求(本部分第7章);
 - -完善了"试验方法"的相关内容(本部分第8章);
 - —完善了"检验规则"的相关内容(本部分第9章);
 - —增加了规范性附录"散热性能试验方法"(本部分"附录 A");
 - —增加了资料性附录"电力电缆用导管的选型原则"(本部分"附录 B");
 - ——增加了资料性附录"电力电缆用导管的施工"(本部分"附录 C")。

请注意本文件的某些内容可能涉及专利。本文件的编写和发布机构不承担识别专利的责任。

本文件由中国电力企业联合会提出。

本文件由电力行业电力电缆标准化技术委员会(DL/TC 19) 归口。

本文件起草单位:中国电力科学研究院有限公司、电力工业电气设备质量检验测试中心、国家电网 有限公司、浙江华电器材检测研究院有限公司、国缆检测(广东)有限公司、武汉产品质量监督检验所、 杭州联通管业有限公司。

本文件主要起草人:彭超、赵健康、熊汉武、欧阳本红、吴芳芳、佟海燕、金群、陈毅明。

II

III

新江 机聚苯甲基酚 马管

申力申缆导管技术条件 第1部分: 总则

本文件规定了电力电缆导管的产品分类、型号规格和标记、技术要求、试样、试验方法、检验规则、 抽样、判定规则、标志、包装、贮存和地厂合格证。 COM CN

本文件适用于电力电缆导管。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件还不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本 文件。

GB/T 8804.2 热塑性塑料管材 拉伸性能测定 第2部分:硬聚氯乙烯(PVC-U)、氯化聚氯乙烯 (PVC-C)和高抗冲聚氯乙烯(PVC-HI)管材

GB/T 8804.3 热塑性塑料管材 拉伸性能测定第3部分:聚烯烃管材

GB/T 8806 塑料管道系统 塑料部件 尺寸的测定

GB/T 9647 热塑性塑料管材 环刚度的测定

GB/T 10294 绝热材料稳态热阻及有关特性的测定 防护热板法

GB/T 14152 热塑性塑料管材耐外冲击性能试验方法 时针旋转法

GB/T 19278-2018 热塑性塑料管材、管件及阀门 通用术语及其定义

GB/T 39379 无压热塑性塑料管道系统 水密性试验方法

QB/T 2803 硬质塑料管材 弯曲度测量方法

YD/T 841.1—2016 地下通信管道用塑料管 第1部分: 总则

3 术语和定义

GB/T 19278—2018 界定的以及下列术语和定义适用于本文件。

3. 1

质量特性 quality characteristics

产品所具有的可以按照技术条件或其他特定要求进行检验的特性。

混配料 compound

一种或几种聚合物和必要添加剂经混合/塑化得到的、直接用于制品加工的均匀混合物。其任一 组分均不能以机械方式分离出来。

注: 粒状混配料通常以探触共混法制备; 粉状混配料通常经过干混及部分塑化处理,以保持组份的稳定。

[来源: GB/T 19278—2018 2.1.1]

3 3

回用料 reprocessable material powerk material

由生产过程中的边角余料、样品或检验形似但未使用过的清洁制品,经处理制成的具有确知配方或 性能的材料。

注:由原生产者处理制成的回用料称为本厂回用料, 这种于其他外来回用料。

[来源: GB/T 19278—2018,2.1.3]

3 4

胶衣树脂 unsaturation resin 制作玻璃钢制品胶衣层的专用树酯,是不饱和聚酯中的一个特殊品种,主要用于制品的表面,呈连:的覆盖树脂薄层。

电缆导管 cable conduit —种纵向截面轮廓为实壁或波纹、可接续的管材,用于保护电缆且便于电缆的拉入或拉出。 续性的覆盖树脂薄层。

3. 5

3.6

结构作为承力层的复合管,以及用短纤维作为增强相的复合材料制成的管材。

注:玻璃纤维(Glass fiber)作为增强材料的导管也称作玻璃钢管(GFRP管)。

[来源: GB/T 19278—2018,2.2.8, 有修改]

3. 7

实壁类电缆导管 cable conduits of solid-wall

任意横截面均为相同环状、管壁为实心的电缆导管。

3.8

改性聚氯乙烯电缆导管 cable conduits of modified polyvinyl chloride (PVC-M)

以聚氯乙烯树脂为主要原料,加入氯化聚氯乙烯树脂及必要的改性添加剂,经共混改性的聚氯乙烯 均匀混配料。在特定的工艺、模具和设备下经挤出成型的塑料电缆导管,包括实壁、波纹等结构。

3. 9

高强度聚氯乙烯塑料电缆导管 cable conduits of high strength polyvinyl chloride

采用最小要求强度(MRS)不小于25 MPa的聚氯乙烯(PVC)混配料为原料,经挤出成型的一种高 强度塑料电缆导管。

3. 10

波纹类电缆导管 cable conduits of corrugated

采用波纹状以改进导管特定性能或节省材料的电缆导管。

纤维水泥电缆导管 cable conduits of fiber cement

以无机矿物纤维、有机合成纤维或植物纤维为增强材料,与水泥、水经均匀混合搅拌后采用抄取法 种电缆导管。海泡石管、维纶水泥管都属于纤维水泥管。

3. 12

承插式混凝土预制电缆导管 cable conduits of socket type precast concrete

混凝土在模具内壳注振捣成型并经蒸汽养护形成的一种采用承插式连接的预制混凝土电缆导管。

3. 13

非开挖用电缆导管 cable conduits of trenchless use

利用各种岩土钻掘设备和技术,段,通过导向、定向钻进等方式敷设、更换和修复的各种塑料类电 缆导管。

3. 14

塑料或胶衣树脂制成的具有防渗水功能的复合电缆导管。

3.16

3.17

插口[端] spigot

管道部件上用于插入承口实现连接的管端结构。

注: 承插连接时, 利用插口的外表面与承口内表面配合实现连接; 一些材料也可以利用插口的端面实现对接。

[来源: GB/T 19278—2018,2.2.14,有修改]

3. 18

公称尺寸 nominal size

尺寸规格的名义值,通常是便于使用的圆整值。

「来源: GB/T 19278—2018,2.3.4,有修改]

3. 19

公称尺寸 DN/ID nominal size DN/ID

与内径相关的公称尺寸。

注:也称为公称内径。

[来源: GB/T 19278—2018,2.3.6,有修改]

3. 20

公称内径 nominal inside diameter

导管或部位内径的名义值。

3. 22

3. 23

3.24

3. 25

3. 26

式中:

 S_r ——环刚度, 常用单位 kN/m^2 ;

E ——管壁材料的弹性模量;

—单位宽度的管壁纵向截面对其弯曲中性轴的惯性矩;

D₀——截面弯曲变形中性面的直径。

注 1: 环刚度的测试使用环状试样。环刚度中的"环"是为了与"轴向刚度"或"纵向刚度"区分。

注 2: 有些管道(例如铸铁管)使用径向刚度(diametral stiffness)的概念,与此处定义本质是一致的。但有些国家 标准体系中采用半径定义,测量方法也与我国不同,需注意区分。

注 3: "中性面"是指弯曲变形时既不受拉伸也不受压缩、应力为 0 的面。

注 4: 对于均质实壁管, I采用公式(2)计算。

$$I = e^3 / 12 \dots (2)$$

式中 e 为壁厚。

「来源: GB/T 19278—2018,2.4.2]

3.27

公称环刚度 nominal ring stiffness

不刚度的名义值,通常是一个便于使用的圆整数,表示环刚度的最小规定值。

GB/T 19278—2018 ,2.4.3]

MPP: 改性聚丙烯(modified polypropylene)

NHAP: 纳米热浸塑防腐钢管 (nano-hotdipped anticorrosive steel pipe)

PE: 聚乙烯 (polyethylene)

PP: 聚丙烯 (polypropylene)

PVC: 聚氯乙烯 (polyvinyl chloride)

PVC-C: 氯化聚氯乙烯 (chlorinated polyvinyl chloride)

PVC-H: 高强度聚氯乙烯(high strength polyvinyl chloride)

PVC-M: 改性聚氯乙烯 (modified polyvinyl chloride)

PVC-U: 硬质聚氯乙烯 (unplasticized polyvinyl chloride)

SN: 公称环刚度 (nominal ring stiffness)

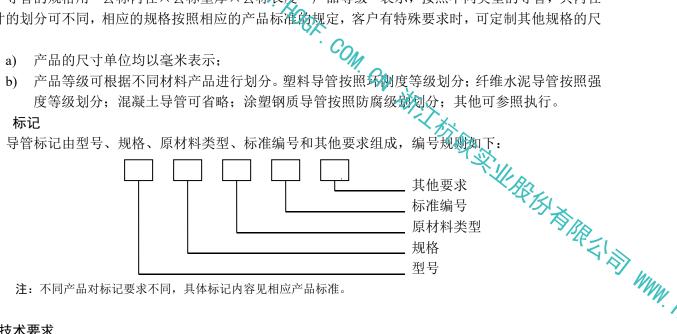
5 产品分类、型号规格和标记

5.1 分类

从材料上分为塑料管、纤维水泥管、混凝土管和涂塑钢管; 从结构上分为实壁管和波纹管; 从孔数 上分为单孔管和多孔管;从施工工艺上分为开挖管和非开挖管。

5.2 型号规格

5. 2. 1 型号


导管的型号用三层拼音符号表示。按顺序含义如下:

- a) 第一层符号为字冠,统一用字母 D 表示导管。
- b) 第二层符号表示导管的类型,分别用 B、S、W、X、T、F、Q、G等表示,其中 B表示玻 璃纤维增强塑料电缆导管、S表示塑料实壁类电缆导管、W表示波纹管类电缆导管、X表示纤 维水泥电缆导管、T表示承插式混凝土预制电缆导管、F表示非开挖类电缆导管、Q表示塑钢 复合电缆导管、G表示涂塞钢质电缆导管。
- c) 第三层符号表示结构型式、成型工艺或者材料。具体见相应产品标准。

5.2.2 规格

导管的规格用"公称内径×公称壁厚×公林长度 产品等级"表示,按照不同类型的导管,其内径 尺寸的划分可不同,相应的规格按照相应的产品标准的规定,客户有特殊要求时,可定制其他规格的尺 寸。

5.3 标记

6 技术要求

6.1 塑料类电缆导管技术要求

塑料类电缆导管的技术要求项目见表 1。具体技术要求详见相应产品标准。

	祝! 至作	1大七兆(1日时)人	小文小《日		
项目	玻璃纤维增强	塑料实壁类电	塑料波纹类电	非开挖类电缆	塑钢复合电缆
	电缆导管	缆导管	缆导管	导管	导管
外观	√	√	√	\checkmark	√
尺寸	√	√	√	\checkmark	√
密度		√	√	\checkmark	
静摩擦系数	√	√	√	\checkmark	√
环刚度	√	√	√	√	√
压扁试验		√	√	√	_
落锤冲击	√	√	√	√	√
维卡软化温度	_	√	_	√	√

表 1 塑料类电缆导管的技术要求项目

拉伸强度	√	√	_	√	√
浸水后拉伸强度	√	_	_	_	√
焊接强度		_	_	√	_
新裂伸长率	_	√	_	√	_
巴氏硬度	√	_	_	_	√
弯曲负荷热变形温度	√	_	_	_	√
浸水后压扁线载荷保留家	√	_	<u>—</u>	_	√
碱金属氧化物含量	2 V	_	_	_	√
氧指数		_	_	_	√
散热性能	SAP.	√	√	√	√
纵向回缩率	-, < /	√ √	_	√	_
烘箱试验	_	Wa.	√	_	√
管体承受外水压抗渗水能力		Whi I i	_	_	V
接头密封性能	√	170 _G	√ √	_	_
注:"√"表示型式检验		择的相应项目,"	"表示可不执行	0	

6.2 其他类型电缆导管技术要求

其他类型电缆导管的技术要求项目见表 2。具体技术要求详见相应产品标准。

表 2 其他类型电缆导管的技术要求项目

	ペー 八心人王心が		X	
项目	纤维水泥电缆导管	承插式混凝土预制电缆导 管	企塑钢质电缆导管	
外观	√	V	The same of the sa	
尺寸	√	√	VIII.	
抗折荷载	√	_	- ²	
导管外压破坏荷载	√	√		
套管外压强度	$\sqrt{}$	_	_	Z D MM
抗渗性和接头密封性能	√	_	_	Wun
导管和套管的管壁吸水率	√	_	_	
抗冻性	√	_	_	
耐酸、碱腐蚀	√	_	_	
管体破坏弯矩	_	√	_	
接头部剪切破坏荷载	_	√	_	
接头密封性能	_	V	V	
涂层厚度	_	_	√	
针孔试验	_	_	√	
附着力	_	_	√	
抗压扁	_	_	√	
耐低温	_	_	√	
耐化学试剂		_	√	
耐候性		_	√	
耐湿热性	_	_	√	
静摩擦系数	√	√	_	

散热性能	V	V	_
注:"√"表示型式	检验或出厂检验所选择的相应	顶目,"—"表示可不执行。	

6.3 导管的连接方式

导管的连接方式应适合相应产品连接要求,导管连接后的接口应满足施工和应用的要求,并符合相应产品要求的防水性能。

6.4 外观

导管的外观应符合相应产品标准要求。

6.5 尺寸

- 6.5.1 导管的公称尺寸用公称内径 DN/ID (内径系列)表示。
- 6.5.2 导管的长度以公称长度上表示,公称长度应符合相应产品标准要求,其他长度由供需双方协商确定。导管长度除另有规定外,一般不允许有负偏差。
- 6.5.3 除产品标准中另有规定外,导管的平均内径允许偏差、承口内径允许偏差、最小承口长度以及导管不圆度应符合表 3 的规定。

表 3 平均内径、承口内径/最小承口长度及不圆度

单位为 mm

				一 <u>に</u> / J IIIII
公称内径 DN/ID	平均内径允许偏差	承口内径允许偏差	最小承口长度 L _{0, min}	不圆度
70	+0.5	+0.5	70. Min	≤ 1.6
	0	0		
90	+0.6	+0.6	80	≤ 1.8
	0	0		17.% ————————————————————————————————————
100	+0.7	+0.7	80	1 //×2.0
	0	0	00	100
125	+0.8	+0.8	100	≤ 2.3
123	0	0	100	≈ 2.3 >
4.50	+0.9	+0.9	400	
150	0	0	100	≤ 2.5
	+1.0	+1.0		4
175	0	0	100	≤ 2.8
200	+1.2	+1.2	120	< 2.2
200	0	0	120	≤ 3.2
225	+1.4	+1.4	120	- 2 O
225	0	0	120	≤ 3.8
250	+1.5	+1.5	120	< 10
250	0	0	120	≤ 4.2
200	+1.6	+1.6	1.40	< 15
280	0	0	140	≤ 4.5
215	+1.8	+1.8	140	< 4.0
315	0	0	140	≤ 4.8
255	+2.0	+2.0	140	- 5.3
355	0	0	140	≤ 5.2
注 1: 最小承口	长度是从承口端部到承口底	部的最小距离。		

表 4 壁厚允许偏差

ik.	注 2: 承口内径偏差为制造与设计的偏差。	
	注 3: 其他规格尺寸由供需双方协商确定,其承口内径分	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
TOTAL	6.5.4 导管壁厚允许偏差应符合表 4 的规定。	
4	表 4 壁厚	允许偏差
浙江村政	THE BE	单位为 mm
	公称壁厚 en	壁厚允许偏差
		+ 0.5
	$e_{\rm n} < 4.0$	0
	105 105 (0)	+ 0.7
	4.0 \left\(\) \(0
	(2) (2)	+ 0.9
	$6.0 \leqslant e_{\rm n} < 8.0$	0
	· COM	+1.2
	$8.0 \leqslant e_{\rm n} < 10.0$	0
	$10.0 \leqslant e_{\rm n} < 12.0$	+ 1.4
	$10.0 \leqslant e_{\rm n} \leqslant 12.0$	0
	$12.0 \leqslant e_{\rm n} < 14.0$	+1.6
	$12.0 \ll \mathcal{E}_{\rm B} \sim 14.0$	0
	$14.0 \leqslant e_{\rm n} < 16.0$	+1.8
	14.0 < E _n < 10.0	PKI 0
	$e_{ m n} \geqslant 16.0$	A
	$\epsilon_{\rm n} > 10.0$	07=1

6.5.5 导管弯曲度根据导管有效长度 L_1 进行计算。导管的弯曲度应符合表 5 的规定

表 5 导管弯曲度

	3 L JELZ
电缆导管	弯曲度 / %
玻璃纤维增强塑料	0.5
塑料实壁类	0.5
塑料波纹类	1.0
纤维水泥	0.25
混凝土预制	0.25
塑钢复合	0.5
涂塑钢管	0.25
注: 其他产品可参照执行。	

6.6 结构、材料性能

6.6.1 密度

适用于塑料电缆导管, 其密度指标应符合相应产品标准要求。

6.6.2 环刚度

适用于塑料电缆导管, 其环刚度等级应符合相应产品标准要求。

6.6.3 压扁试验

适用于塑料电缆导管, 其压扁试验应符合相应产品标准要求。

6.6.4 拉伸强度

适用于塑料电缆导管,其拉伸强度应符合相应产品标准要求。

6.6.5 断裂伸长率

适用于塑料电缆导管,其断裂伸长率应符合相应产品标准要求。

落锤冲击

适思无塑料电缆导管,其落锤冲击试验应符合相应产品标准要求。

6.6.7 静摩擦系数

适用于所有电缆导管,其静摩擦系数应符合相应产品标准要求。

6.6.8 其他结构、材料性能

导管的其他结构、材料性能指标详见相应产品标准的规定。

6.7 热性能

6.7.1 维卡软化温度

适用于塑料电缆导管,其维卡软化温度应符合相应产品标准要求。

6.7.2 弯曲负荷热变形温度

适用于塑料电缆导管,其弯曲负荷热变形温度应符合相应产品标准要求。

6.7.3 纵向回缩率

6.7.4 烘箱试验

6.7.5 散热性能

6.8 抗渗、接头密封性能

6.8.1 接头密封性能

6.8.2 抗渗性能

3 纵向回缩率 适用于塑料电缆导管,其纵向回缩率应符合相应产品标准要求 适用于塑料电缆导管,其烘箱试验应符合相应产品标准要求 适用于所有电缆导管,其散热性能应符合相应产品标准要求。
3 抗渗、接头密封性能 将两根导管按照相关连接方式组装好,接头处不应渗水、漏水。
8.2 抗渗性能 纤维水泥导管除按 6.8.1 进行接头密封性能试验外,同时还应进行抗渗性能试验,要求同 6.4.1,导 分 水表面不应有渗水、洇湿或水斑。 管外表面不应有渗水、洇湿或水斑。

6.9 其他技术要求

应满足其相应的非通用技术要求,如耐化学介质、环保性能、阻燃性能、耐候性能等。

7 试样

7.1 试样的制备、数量要求

- 7.1.1 试样在试验前需经外观和尺寸检查,试样制备方法应符合相应产品标准或试验方法的规定。
- 7.1.2 试样数量应符合本部分及相应产品标准要求。

7.2 试样环境条件

- 7.2.1 塑料电缆导管的试验环境条件应符合 GB/T 2918 的规定。
- 7.2.2 塑料电缆导管之外的导管的试验环境条件应符合相应产品标准要求,标准未作规定时,试验环 境条件为 (23 ± 2) ℃。

7.3 试验状态调节

除有特殊规定外,样品应按 GB/T 2918 规定,在环境温度(23±2) ℃、相对湿度(50±10)% 的条件下放置至少 24 h, 并在同样条件下进行试验。

8 试验方法

8.1 外观

目测,内壁可用光源照射。

尺寸

8.20 平均内径

按 GB/T 8806 规定,用内径卡尺或内径 π 尺在距离端口不小于 25 mm 测量 4 次取算术平均值,每 次测量应精确到 0.1 mm。

8.2.2 壁厚

按 GB/T 8806 规定: 用精度不低于 0.02 mm 的量具测量。在选定的被测截面上移动测量量具直至 找到最大和最小壁厚,并记录测量值。

8.2.3 长度

按 GB/T 8806 规定,用精度不低于 1 mm 的量具测量。如存在承口,用导管的总长减去承口深度, 记录得到的结果作为导管的有效长度。

8.2.4 不圆度

按 GB/T 8806 规定,用内径卡尺或内径 π 产在距离端口不小于 25 mm 移动测量量具直至找到最大 和最小直径,并记录测量值。不圆度应在正常运输和贮存的条件下进行测量。

8.2.5 承口尺寸

8.2.5.1 承口平均内径

按 GB/T 8806 规定,用内径卡尺或内径 π 尺在承口中部测量 次取算术平均值,每次测量应精确到 0.1 mm 。

8.2.5.2 最小承口深度

5.2 最小承口深度 按 GB/T 8806 规定,用精度不低于 0.02 mm 的量具测量。在承口端均匀间隔测量 4 次取算术平均值, 每次测量应精确到 0.1 mm。

8.2.6 弯曲度

按 QB/T 2803 规定, 取三个长 1m 的试样,将试样置于一平面上,使其滚动,当试样与平面呈最大 HOGE COM 间隙时,用游标卡尺或精度不低于 0.1 mm 金属直尺测量线至管壁的最大垂直距离,取三个试样的试 结果的最大值为测量结果。

8.3 结构、材料性能试验方法

8.3.1 密度

按 GB/T 1033.1 中的浸渍法进行试验。

8.3.2 环刚度

玻璃纤维增强电缆导管和塑钢复合电缆导管按 GB/T 5352 进行试验; 其他塑料电缆导管按 GB/T 9647 进行试验。从导管上截取 3 根长度(300 ± 10) mm 的试样,每个试样试验一次,取试验 结果的算术平均值。

8.3.3 压扁试验

按 GB/T 9647 进行试验。从导管上截取 3 根长度 (300 ± 10) mm 的试样, 试验速度 (10 ± 0.5) mm/min,每个试样试验一次。加荷至试样相应的要求时,记录试样变化情况。

8.3.4 拉伸强度

玻璃纤维增强电缆导管和塑钢复合电缆导管按照相应产品标准试验;聚氯乙烯类塑料电缆导管按 GB/T 8804.2 进行试验, 取算术平均值为试验结果; 聚丙烯及聚乙烯类塑料电缆导管按 GB/T 8804.3 进 行试验, 取算术平均值为试验结果。

8.3.5 断裂伸长率

聚氯乙烯类塑料电缆导管按 GB/T 8804.2 进行试验, 取算术平均值为试验结果; 聚丙烯及聚乙烯类 塑料电缆导管按 GB/T 8804.3 进行试验, 取算术平均值为试验结果。

8.3.6 落锤冲击

按 GB/T 14152 进行试验。除产品另有规定外,试样预处理温度为 (23 ± 2) ℃,预处理时间不 ♪ 〒4h; 试样长度(200 ± 10) mm ,锤头球面曲半径为 50 mm ,冲头柱直径为 90 mm 。

8. 3. 7心静摩擦系数

按 YD T.841.1-2016 中附录 A 进行试验。

- 8.4 导管热性能试验方法
- 8.4.1 维卡软化温度

聚氯乙烯类塑料电缆导管按 GB/T 8802 进行试验;聚丙烯及聚乙烯类塑料电缆导管按 GB/T 1633 中 A50 法进行试验。

8.4.2 弯曲负荷热变形温度

8.4.3 纵向回缩率

8.4.4 烘箱试验

8.4.5 散热性能

- 8.5 抗渗、接头密封性能试验方法
- 8.5.1 接头密封性能

水压下保持 15 min 分钟。

8.5.2 抗渗性能试验

导管外表面不应有渗水、洇湿或水斑。

8.6 其他技术要求试验方法

9 检验规则

9.1 检验分类

检验分为出厂检验和型式检验。

9.2 出厂检验

产品须经生产厂质量检验部门检验合格并附有检验合格证方可出厂。

9.3 型式检验

型式检验适用于产品的定型检验、生产过程中稳定性检验和质量监督检验,型式检验为周期检验计 数抽样检查。

一般每5年进行1次。若有以下情况之一,应进行型式检验:

- a) 新产品或老产品转厂生产的试制定型鉴定;
- b) 结构、材料、工艺有较大变动可能影响产品性能时;
- c) 因任何原因停产6个月及以上,恢复生产时;
- d) 出厂检验结果与上次型式检验结果有较大差异时;

- e) 供需双方合同有要求时;
- f) 国家市场监督管理部门提出型式检验要求时。

9.4 出厂检验、型式检验项目

出厂检验、型式检验项目见相应产品标准要求。

9.5 不合格和不合格品的分类

根据产品质量特性的重要程度,不合格分为 A 类、 B 类和 C 类不合格,不合格品分为 A 类、B 类和 C 类不合格品。 A 类表示极重要质量特性, B 类表示重要质量特性, C 类表示一般质量特性。

- —— A 类不合格: 有 1 个或 1 个以上 A 类不合格; 也可能还有 B 类和(或)C 类不合格的单位产品。
- —— B 类不合格: 有 1 个或 1 个以上 B 类不合格; 也可能还有 C 类不合格, 但不包含 A 类不合格 的单位产品。
- —— C 类不合格:有 1 个或 1 个以上 C 类不合格;但不包含 A 类和 B 类不合格的单位产品。

9.6 正常、加严和放宽检验及转移规则

应符合 GB/T 2828.1 的规定。

10 抽样

10.1 检验批

对于塑料电缆导管,用相同原料和工艺生产的同一规格同一类型的导管作为一批。 DN/ID ≤ 175 mm 的导管,每批生产数量不应超过 50 000 m; DN/ID > 175 mm 的导管,每批生产数量不应超过 30 000 m。如果生产 15 天仍不足规定数量,则以 15 天的产品为一批。

对于非塑料电缆导管,同一原材料、同一配方、同一工艺、同一型号规格、稳定连续生产一定数量的产品(1200根)为一个检验批;如果30天仍不足规定数量,则以30天的产品为一批。

10.2 检验水平

本文件规定的电缆导管检验水平采用GB/T 2828.1中一般检验水平 II。

10.3 样本量字码

样本量按 GB/T 2828.1中样本量字码确定,对特定的批量和规定的检验水平使用表 6 查找适用的字码。

		样和	量本量				接收质量限(AQL)					
批量	 样本 量字	正常			2.5			4.0			6.5	
14年	四里子 四四	和加	放宽	正常	加严	放宽	正常	加严	放宽	正常	加严	放宽
		ग्रह		A _c R _e	A _c R _e	$A_{\rm c}$ $R_{\rm e}$	A _c R _e					
2~8	A	2	2				↓		↓	0 1	↓	0 1
9~15	В	3	2	↓ ↓		\downarrow	0 1	↓	0 1	↑	0 1	↑
16~25	С	5	2	0 1	↓	0 1	1	0 1	1	\downarrow	↓	↓
26~50	D	8	3	1	0 1	1	↓	↓	↓	1 2	\	↓
51~90	Е	13	5	↓	↓	\downarrow	1 2	↓	↓ ↓	2 3	1 2	1 2
91~150	F	20	8	1 2	↓	\downarrow	2 3	1 2	1 2	3 4	2 3	2 3
151~280	G	32	13	2 3	1 2	1 2	3 4	2 3	2 3	5 6	3 4	3 4

表 6 一般检验水平 || 的一次抽样方案(正常、加严、放宽)

281~500	Н	50	20	3 4	2 3	2 3	5 6	3 4	3 4	7 8	5 6	5 6
501~1 200	J	80	32	5 6	3 4	3 4	7 8	5 6	5 6	10 11	8 9	6 7

注 1: ↓─使用箭头下面的第一个抽样方案,如果样本量等于或超过批量,则执行 100%检验。

注 2: ↑—使用箭头上面的第一个抽样方案。

注3: Ac—接收数; Re—拒收数。

10.4 接收质量限(AOL)与不合格质量水平(ROL)的确定

10.4.1 接收质量限(AOL)的确定

对极重要质量特性,AQL=2.5;对重要质量特性,AQL=4.0;对一般质量特性,AQL=6.5。

10.4.2 不合格质量 (RQL)的确定

对极重要质量特性,ROL=30; 对重要质量特性,ROL=40; 对一般质量特性,ROL=50。

10.5 出厂检验抽样方案

10.5.1 抽样方案类型的选择

出厂检验按 GB/T 2828.1 进行,根据接收质量限(AQL)、样本量字码和判断水平确定抽样方案, 一般采用正常检验一次抽样方案,抽样方案表6进行。

示例:一般检验水平为 Π 的正常检验一次抽样方案。查表 6,对批量为 $91\sim150$, 查处样本量字码为 F,样本量为 20 ,对接收质量限(AQL)为 2.5 时,接收数 A_c 为 1 , 指收数 R_c 为 2 。 对接收质量限(AQL)为 4.0 时,接收数 A_c 为 2, 拒收数 Re 为 3。

10.5.2 样本的抽取

样本可在批生产出来以后或在批生产期间按简单随机抽样方式从批中抽取,当批由子批或层组成 时,应使用分层抽样。按此方式,各子批或各层的样本量与子批或层的大小是成比例的。

使用二次或多次抽样方案时,每个后继的样本应从同一批的剩余部分抽取

10.6 型式检验抽样方案

10.6.1 抽样方案类型的选择

型式检验按 GB/T 2829 进行,根据不合格质量水平和判别水平确定抽样方案。 次抽样方案,取一般检验水平Ⅱ,正常检验一次抽样方案见表7,正常检验二次抽样方案见表8。

表 7 判别水平 || 的一次抽样方案

					W .		
样本量	3	0	-	40	5	50	1400
	$A_{\rm c}$	$R_{ m e}$	$A_{\rm c}$	Re	$A_{ m c}$	Re	HOGK
2							
3					0	1	
4			0	1			
5	0	1					
6					1	2	
8			1	2	2	3	
10	1	2	2	3	3	4	
12	2	3	3	4	4	5	
16	3	4	4	5	5	6	
20	4	5	5	6			
25	5	6					

			不合格质量水平(RQL)	
样本	样本量	30	40	50
		$A_{ m c}$ $R_{ m e}$	$A_{\rm c}$ $R_{\rm e}$	$A_{ m c}$ $R_{ m e}$
				*
77 第一	2		*	
第三	2		*	
第一人	3	*		
第二	3	·		
第一	1 A A A A A A A A A A A A A A A A A A A			0 2
第二	2F 21			1 2
第一	5 37		0 2	0 3
第二	5	<u> </u>	1 2	3 4
第一	6	70000 0 2	0 3	1 3
第二	6	HOGK 1 2	3 4	4 5
第一	8	0 C/V	1 3	1 5
第二	8	3 4 CN	4 5	5 6
第一	10	1 3	1 5	2 5
第二	10	4 5	5 6	6 7
第一	12	1 5	2/3	
第二	12	5 6	6 7 1/1	
第一	16	2 5		TSI STEELS
第二	16	6 7	·	
主: * ——使用对应的	一次抽样方案; Ac——合	格判定数; R _e ——不合	洛判定数。	3/5/2
0. 6. 2 样本的抽 耳 周期检验的样之 呆证所得到的样本能 0. 6. 3 周期检验 质	双 本应从本周期制造的并 步代本周期的实际技术 5的处置	·经逐批检查合格的某 :水平。	5个批或若干批中抽取	7,抽取样本的方法要"////

表 8 判别水平 || 的二次抽样方案

10.6.2 样本的抽取

10.6.3 周期检验后的处置

11 判定规则

11.1 出厂检验批的可接收性或不可接收性的判定

11.1.1 一次抽样方案

当样本中检查出的不合格品数小于或等于接收数时,则判定该批产品可接收; 当样本中检查出的不 合格品数大于或等于拒收数时,则判定该批产品不可接收。

11.1.2 二次抽样方案

当第一样本中发现的不合格品数小于或等于第一接收数,则判定该批产品可接收;当第一样本中发 现的不合格品数大于或等于第一拒收数,则判定该批产品不可接收,当第一样本中发现的不合格品数大 于第一接收数同时又小于第一拒收数,则抽第二样本进行检验。

当第一和第二样本中发现的不合格品数总和大于或等于第二拒收数,则判定该批产品不可接收。

11.2 周期检验合格或不合格的判定

11.2.1 总则

根据样本检验的结果, 按下列规则进行判定。

11.2.2 一次抽样方案

挡在第一和第二样本中发现的不合格品数总和大于或等于第二不合格判定数,则判定该批产品不合格。

12 标志、包装、贮存和出厂合格证

导管外表面应有明显标志,标志的大小应适当,任任从、全面或、企工。 产品标志至少应包括下列内容: a) 产品生产执行的标准编号; b) 产品名称、类别、型号规格; c) 原材料类型; d) 生产厂名称(或商标)、生产日期(或批号); e) 必要时注明:小心轻放、严禁抛掷。 2 包装 导管出厂前,必要时应妥善包装,加以保护,以防止碰撞损坏和异物进入。具体要求根据相应产品 导管外表面应有明显标志,标志的大小应适当,在存放、运输、装卸和正常安装中字迹仍应保持清 楚。产品标志至少应包括下列内容:

12.2 包装

标准规定。

12.3 贮存

- 12.3.1 产品应按类别、型号规格及生产日期分开存放整齐,产品存放场地应平整,设产用分层交叉堆 放,承口部位应交错放置,防止挤压变形。底部用垫木、管枕或草包铺好,垫木、管枕间距放在1m以

发货时须将出厂合格证随货送达用户,同时应提供产品使用说明书以及用户有特殊要求的性能指 标,产品出厂合格证应包括下列内容:

- a) 产品生产执行的标准及编号;
- b) 产品名称、类别、型号规格;
- c) 生产厂名称(商标)、地址及生产日期(或批号);
- d) 产品数量、批量编号;
- e) 产品性能检验结果(包括所使用的原材料);
- f) 生产厂质量检验部门与专职检验员签章;
- g) 装卸、运输、施工及安装等注意事项。

12.5 其他

12.5% 电力电缆导管的选型原则参见附录 B ,电力电缆导管的施工参见附录 C 。
12.5.2 复采用超声脉冲回波法、红外线测量法、光谱分析法等技术,对电力电缆导管的壁厚和材质进行初步筛查。

附录A (规范性) 散热性能试验方法

A. 1 概述

为导管,将试样放置在规定的环境温度和规定时间的烘箱中充分受热后,再放置在(23 ± 5)℃ 进行散热,验证导管内外壁温度是否在规定的时间散热到规定的温度。

A. 2 方法 A 烘箱试验法

A. 2.1 设备

A. 2. 1. 1 烘箱

带温控器的温控空气循环烘箱,能使试验过程中工作温度保持在 (80 ± 2) ℃,并有足够的加热 功率,试验放入烘箱后,能使温度在 15 min 内重新达到设定的温度。温度计精度为 0.5 ℃。

A. 2. 1. 2 红外测温仪

带红外线指示的测温仪,能显示 0 °C ~ 100 °C 温度,分辨力为 0.1 °C。

A. 2. 2 试样

A. 2. 2. 1 试样的长度

在出厂检验合格的批次产品中随机抽取导管为试样,取长度内(300±10) mm 的管段,不包括 导管承口。

A. 2. 2. 2 标记和数量

在待测的试样外表面中部位置轴向相互间隔 60 mm、沿圆周方向成 120 企螺旋状排列的 3 个点上 分别做出3个标记,试样内表面以同样的方法做出3个标记,用于试验过程中测量试样 每个试样标记的数量为6个。

A. 2. 3 状态调节

按照试验要求在试验前,试样应在试验环境温度(23±5)℃下状态调节至少24h。

A. 2. 4 试样步骤

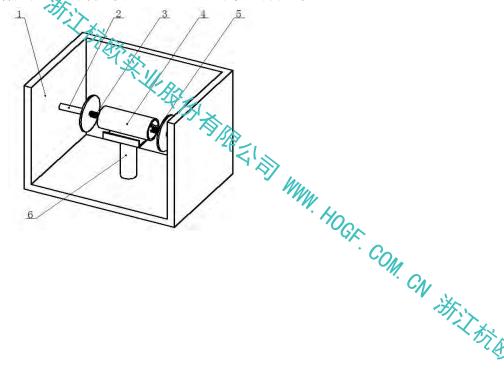
- A. 2. 4. 1 将试验所用的烘箱温度调节至规定的试验温度 (80 ± 2) °C, 达到温度后保持 15 min。
- A. 2. 4. 2 将状态调节并做好标记的试样,放于试验烘箱中,并使标记处不接触烘箱的任何部位。
- A. 2. 4. 3 试样在烘箱中放置至少 4 h 后,将试样放置在室内环境温度为 (23 + 5) ℃ 下进行散热冷却, 避免阳光直射。不同壁厚的散热时间见表 A.1。
- A. 2. 4. 4 当散热时间达到规定时间时,用红外测温仪记录试样内外壁表面标记处温度。取 3 个外表温 度和3个内表温度的算术平均值作为试验结果。

—————————————————————————————————————							
材质	壁厚 e	散热时间					
初灰	mm	min					
PP	$e \leqslant 14.0$	60 ± 1					
	14.0 < e < 20.0	90 ± 2					
	$e\geqslant 20$	120 ± 2					
PE	$e \leqslant 14.0$	50 ± 1					

表 A.1 不同壁厚的散热时间

		14.0 < e < 20.0	80 ± 2			
<u>-</u>		$e \geqslant 20$	100 ± 2			
		$e \leqslant 7.0$	30 ± 1			
	PVC	7.0 < e < 10.0	45 ± 1			
E A		<i>e</i> ≥10	60 ± 1			
X. YILL	注: 其他材质可参考 PVC 材质执行,也可根据供需双方协商确定。					
	方法 B ——温控箱试验	ὰ法				
	A. 3. 1 设备 典准按照的控制统 泪 t	^{交売用在 (-20 ~ 40) ℃ 。箱内具备调节:}	3. 保育度的调带加和封持记货而			
1	m /m 17 / H1177 m178 . /m 1	ディルコカイエー (=/U/~ 4U/) (し。) 科グ(具金)加口)				

--温控箱试验法


带温控器的控制箱,温控范围在 (-20~40) ℃。箱内具备调节试样高度的调节架和封堵试样两 端的封头,封头的间连接加热丝与温度传感器,封头可前后移动,调节架可上下调整位置,见图 A.1。

A. 3. 2 试样

在出厂检验合格的抵决产品中随机抽取导管为试样,取长度为(300±10) mm 的管段,不包括 导管承口。

A. 3. 3 状态调节

按照试验要求在试验前,试样应在试验环境温度 (23 ± 5) ℃ 下状态调节至少 24 h。

说明:

- 1----箱体
- 2----封堵塞
- 3——加热丝
- 4----试样
- 5——温度传感器
- 6---调节支架

图 A.1 温控箱设备示意图

A. 3. 4 试验步骤

- A. 3. 4. 1 将试样置于温度控制箱内高度调节架上,利用两端封头将试样两端的孔封住,并在内部放置 加热管与温度传感器,温度控制箱内温度保持在(23 ± 5)℃;
- A. 3. 4. 2 关闭温控功能,利用加热管,以不低于 15 °C / min 的速率将试样内部温度加热至 80 °C 后, 停止加热:
- A. 3. 4. 3 开启温控功能,温度控制在(23 \pm 5) $^{\circ}$ C,不同壁厚的散热时间见表 A.1,将封口解除后, 用红外测温仪测量试样内部温度并记录。

A. 4 试验报告

- a) 试样的名称、规格;
- b) 试验的日期、地址;

THE REAL WAY THE STATE OF THE S

附录 B (资料性) 电力电缆导管的选型原则

所有电缆导管均可满足在土壤中敷设要求。 改性类塑料电缆导管可满足在空气中架设的要求, 比如

施工环境和应用场景应符合最高气温为 45 ℃ ,最低气温为 - 25 ℃ 的要求。

B.1 正常使用条件
B.1.1 正常使用条件
所有电缆导管均可满足在土壤中敷以
用于城市管廊、地铁、隧道等电缆导管。
不境和应用场景应符合最高气涯
(22 + 5) ℃,环境相对语 在常温 $T_1(23 \pm 5)$ °C, 环境相对湿度应符合日平均值小于等于 95 %; 月平均值小于等于 90 %。 用于户外的应满足太阳辐射强度小于等于 0.1 W/cm²;最大风速小于等于 34 m/s;最大日温差小 于等于 25 ℃。

B. 1. 2 特殊使用条件

2 特殊使用条件 正常使用条件之外的特殊使用条件,应在相关文件中明确提出。

B. 2 选型原则

- B. 2. 1 导管的外观和颜色应符合相应产品标准要求。
- B. 2. 2 直埋敷设的导管应满足规定埋深下的抗压和对环境腐蚀性的要求。在通过不均匀沉降的回填土 地段或地震活动频发地区,还应满足相应的可挠性要求,管路纵向连接应采用挠性管接头。可选择环柔 性较好的改性塑料电缆导管。
- B. 2. 3 部分和全部露出在空气中的导管,宜采用改性聚氯乙烯等壁管、涂塑钢管等户外专用导管。
- B. 2. 4 满足使用条件所需的机械强度和耐久性的导管,宜采用环风度较高的塑料电缆导管或者涂塑钢 管。

- 管。
 B. 2.5 对穿缆过程中要求摩擦系数较低的。

 B. 2.6 导管的内径不应小于电缆外径的 1.5 倍。用于 10 kV 及以上电缆敷设的导管内在小点。
 150 mm。
 B. 2.7 导管使用寿命应不小于 40 年。有特殊环境要求(管廊、地铁、隧道等)的导管使用寿命应不小于 70 年。

导管的选择,需根据环境温度、敷设方式、电缆种类、地域环境等因素进行综合考虑,故设计和使 用的导管也有区别。不同的导管推荐使用范围见表 B.1。

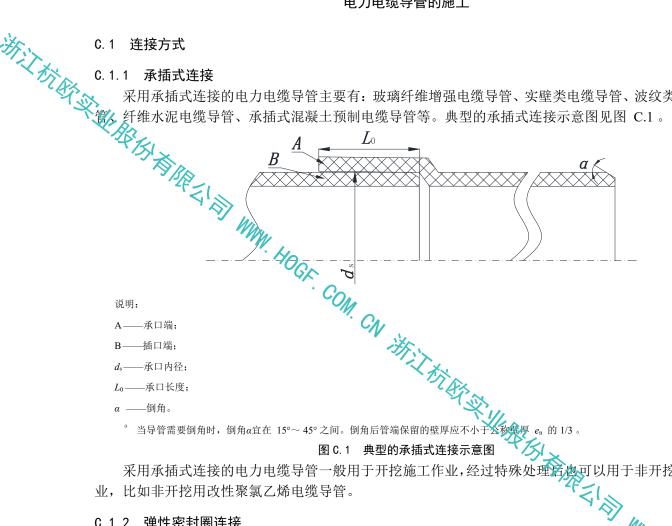
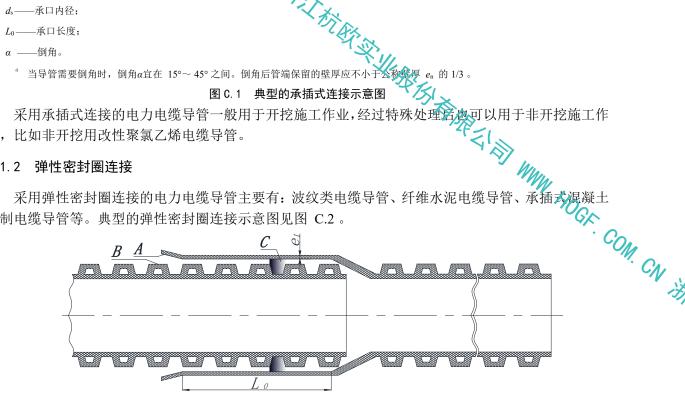

敷设方式 导管名称 备注 排管 空气中 顶管 非开挖 讨路 玻璃纤维增强塑料 / $\sqrt{}$ 氯化聚氯乙烯 (PVC-C) 实壁 10 kV 以上 × X $\sqrt{}$ 硬质聚氯乙烯 (PVC-U) 实壁 10 kV 及以下

表 B. 1 不同导管推荐使用范围

高强度聚氯乙烯 (PVC-H) 实壁	√	_	_	√	√	/
	_	_	_	√	_	使用温度 70℃ 以下
塑料波纹类	V	×	×	×	×	/
纤维水泥	_	_	×	_	×	/
纤维水泥 承插式混凝土预制 非开挖用塑料 塑钢复合 涂塑钢	_	√	×	_	×	/
非开挖用塑料	_	_	√		×	/
塑钢复合	$\sqrt{}$	×	×	\checkmark	×	/
注 1: "参表示推荐使用,"- 注 2: 城市道路下平行敷设或	_	\checkmark	_	√	√	/
, mm	HOGF C	ON CN	S.			MMW. HOGF COM.


附录 C (资料性) 电力电缆导管的施工

采用承插式连接的电力电缆导管主要有:玻璃纤维增强电缆导管、实壁类电缆导管、波纹类电缆导

C.1.2 弹性密封圈连接

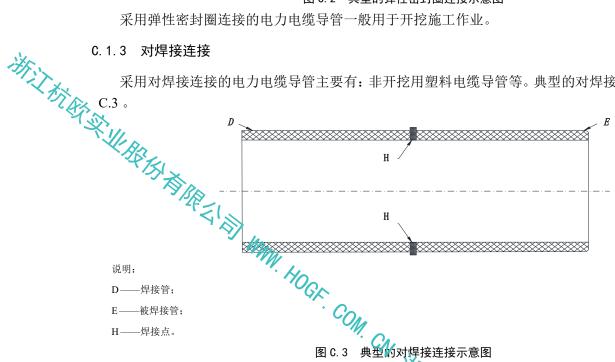
预制电缆导管等。典型的弹性密封圈连接示意图见图 C.2。

说明:

A——承口端;

B——插口端;

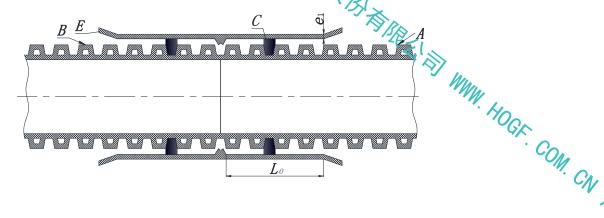
C——弹性密封圈;


 e_1 ——承口壁厚;

L₀——承口长度。

图 C. 2 典型的弹性密封圈连接示意图

采用弹性密封圈连接的电力电缆导管一般用于开挖施工作业。


采用对焊接连接的电力电缆导管主要有:非开挖用塑料电缆导管等。典型的对焊接连接示意图见图

采用对焊接连接的电力电缆导管一般用于非开挖施工作业,也可用于开挖施工作业。

C. 1. 4 管件套接连接

采用管件套接连接的电力电缆导管主要有:玻璃纤维增强电缆导管、 波纹类电缆导管、纤维水泥电 缆导管、承插式混凝土预制电缆导管等。典型的管件套接连接示意图如

说明:

A-----承口端;

B——插口端;

C---弹性密封圈;

E---连接管件;

e₁——承口壁厚;

L₀——承口长度。

图 C. 4 典型的管件套接连接示意图